0%

卷积在图像处理中的应用

卷积的用途:

将图像相邻子区域的像素值与卷积核执行“卷积”操作,可以获取相邻数据之间的统计关系,从而可挖掘图像中的某些重要特征。

比较抽象…所以特征到底是什么?用图像来形象的说明一下

img

下面我们简单介绍一下常用的“久经考验”的卷积核。
(1)同一化核(Identity)。从图13-6可见,这个滤波器什么也没有做,卷积后得到的图像和原图一样。因为这个核只有中心点的值是1。邻域点的权值都是0,所以对滤波后的取值没有任何影响。
(2)边缘检测核(Edge Detection),也称为高斯-拉普拉斯算子。需要注意的是,这个核矩阵的元素总和为0(即中间元素为8,而周围8个元素之和为-8),所以滤波后的图像会很暗,而只有边缘位置是有亮度的。
(3)图像锐化核(Sharpness Filter)。图像的锐化和边缘检测比较相似。首先找到边缘,然后再把边缘加到原来的图像上面,如此一来,就强化了图像的边缘,使得图像看起来更加锐利。
(4)均值模糊(Box Blur /Averaging)。这个核矩阵的每个元素值都是1,它将当前像素和它的四邻域的像素一起取平均,然后再除以9。均值模糊比较简单,但图像处理得不够平滑。因此,还可以采用高斯模糊核(Gaussian Blur),这个核被广泛用在图像降噪上。